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Abstract 11 
Stock assessments are critical to modern fisheries management, supporting the calculation of key 12 
reference variables used to make informed management decisions. However, there is still 13 
considerable uncertainty as to which class of assessment models is appropriate to use under 14 
different circumstances. A common class of models used when age data are available are statistical 15 

catch-at-age assessment (SCAA) models, which track annual cohorts through time. When age data 16 
are unavailable, as is often the case in invertebrate fisheries where the lack of a bony structure such 17 
as otoliths makes aging difficult, statistical catch-at-size assessment (SCSA) models are more often 18 

employed, tracking fish or invertebrates through time by size-classes rather than ages. Do SCAA 19 

models actually perform better than SCSA models when age data are available, or is this just an 20 
assumption we make in fisheries research and management? We examined this question by 21 
evaluating the effectiveness of both SCAA and SCSA models in characterizing cisco, Coregonus 22 

artedi, population dynamics in Thunder Bay, Ontario. Both models were fit using an integrated 23 
framework with multiple sources of data including hydroacoustic estimates of spawning stock, 24 

fishery-dependent and -independent age/length compositions, and harvest data. Our results suggest 25 
that for cisco in Thunder Bay, data-limitations related to lack of size-composition data over the 26 
size range for which cisco growth is rapid resulted in difficulty estimating relative year-class 27 

strength within a SCSA. This led to parameter confounding and ultimately the inability to estimate 28 
natural mortality within a SCSA. This hampered the utility of a SCSA model in comparison with 29 

a SCAA model when age-composition data were available.  30 
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1. Introduction  34 
Stock assessment is a critical aspect of fisheries research and management, supporting the 35 

calculation of key quantities such as spawning biomass, abundance, exploitation rate, recruitment, 36 
and their associated uncertainties. Most assessments conducted in the United States are based on 37 

age-structured assessment methods (Punt et al., 2017), which, when statistically fit, can be referred 38 
to as statistical catch-at-age assessment (SCAA) models. SCAA models are based on the 39 
assumption that most population processes are a function of age, and they work by tracking cohorts 40 
of fish through time, using observations of catch-at-age and auxiliary information to estimate 41 
population parameters (Fournier and Archibald, 1982; Deriso et al., 1985). When catch-at-age data 42 

are unavailable for a species of interest, as is the case in many invertebrate fisheries where lack of 43 

a bony structure such as an otolith makes aging difficult, size-structured assessment methods are 44 

often employed (Punt et al., 2013). Similarly, when statistically fit these types of models can be 45 
referred to as statistical catch-at-size assessment (SCSA) models. SCSA models, contrary to 46 
SCAA counterparts, are largely based on the assumption that most population processes are a 47 
function of size rather than age. Sullivan et al. (1990) developed and applied a framework for 48 

SCSA, which differs from SCAA in that it utilizes observations of catch-at-size and tracks fish in 49 
size bins rather than age-classes through time, often making use of a growth model that determines 50 

transition probabilities of size bins in subsequent time steps. Although age-structured models can 51 
be fit using harvest size-composition data, generally by using a model to convert predicted age-52 
compositions to size-compositions (Fournier et al., 1990, 1998), contemporarily the use of SCSA 53 

is preferred when the sole or primary harvest composition data are for sizes rather than ages (Punt 54 

et al., 2013).  55 
Each method offers distinct advantages and disadvantages. For size-based methods, the model 56 

can directly account for the size structure of removals from a population (Punt et al., 2017), it thus 57 

can more appropriately model some fishery processes such as selectivity as size-based, and 58 
importantly, size-composition data is almost always more abundant because it is both easier and 59 

cheaper to collect. While the observation model of a SCAA can account for size-based selectivity, 60 
accounting for how size-at-age of the survivors is altered by fishing is more challenging (see 61 
Methot (2000) for one approach). SCSA models can considerably decrease the number of fish that 62 

need to be aged, as age-compositions of the catch are not required. SCSA is not without its 63 
challenges. Primary among them is the need for a growth model to determine transition 64 

probabilities through size bins for each time step, where additional aspects such as time-varying 65 
or density-dependent growth can add complexity. Although growth models are often specified 66 
outside of SCAA models to convert abundances-at-age to biomass, their derivation is not critical 67 
to model fit as they are often not used to predict data (provided yield is predicted using mean 68 

weights-at-age from harvest data). The transition of fish from one year to the next is much simpler 69 
within SCAA models, which benefits from the fact that a fish must be a year older in the next 70 
(yearly) time step; a caveat being that our ability to observe ages is not perfect, as there is 71 
measurement error involved in aging organisms, and ignoring this error can result in biased 72 
assessment output (Coggins and Quinn, 1998; Reeves 2003; Bertignac and Pontual, 2007). 73 

Although aging error is not always accounted for in SCAA models, it can be (Thompson et al., 74 

2011; Methot and Wetzel, 2013). In addition, the effects of aging error can be minimized using 75 

quality control in aging techniques (Campana, 2001).  76 
Perhaps due to the deterministic transition of fish through age bins, and advantages associated 77 

with this, very seldom are SCSA models developed for species when age data are available. 78 
Additionally, few studies have compared the two methods. One such study, Punt et al., (2017), 79 
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used simulation analysis to compare the performance of age-, size-, and age- and size-structured 80 
assessment methods and concluded, based on an age- and size-structured operating model, that 81 
size-structured and age- and size-structured assessment methods performed best, while age-82 
structured methods performed poorest. A key factor specified in the operating model for this study 83 

was that growth was modelled using a size-transition matrix, which likely gave the size structured 84 
approaches an advantage. This highlights that this study was done, as are most simulation studies, 85 
based on known population dynamics pre-specified by researchers. The advantage of this approach 86 
is the ability to compare assessment results to what is pre-specified in the operating model as the 87 
true population dynamics of the stock. This specification of the operating model can also limit the 88 

applicability of results, if the researchers’ conception on the dynamics of the stock and fishery 89 

(e.g., survey selectivity as age-based process in Punt et al., 2017), do not actually reflect underlying 90 

processes. Fitting alternative models to empirical data can be highly useful in helping to better 91 
define plausible processes and informing the direction of future simulation studies. 92 

We develop and fit both integrated SCAA and SCSA models for a stock of cisco, Coregonus 93 
artedi, in Thunder Bay (Lake Superior), Ontario. Our objective was to compare and contrast 94 

performance of the different assessment methods when applied to an actual stock and to provide 95 
recommendations on which type of model may be preferred under different scenarios. We were 96 

specifically interested in the overall question: “Does the collection of age-composition data, and 97 
its use in a SCAA lead to an improvement in assessment performance over what could be obtained 98 
using a size-structured model, without using age composition data?”  Given the expenses 99 

associated with collecting age-composition data, it is important to know if as good or better results 100 

can be obtained with size models, perhaps because they better model fishery processes. To our 101 
knowledge, only one study has performed a comparison between age- and size-structured models 102 
on a actual stock with true dynamics unknown (Akselrud et al. 2017, concluding that age-103 

structured fit data best). In a time of shrinking natural resource agency budgets, it seems these 104 
comparisons could provide managers with valuable information on how they might implement 105 

their overall assessment programs.  106 

2. Methods  107 
2.1. Study species 108 

Cisco are a planktivorous species native to the Laurentian Great Lakes. They are largely 109 

pelagic and form annual spawning aggregations during the month of November in nearshore bays 110 

and areas of western Lake Superior, where contemporary spawning stocks are primarily located 111 
(Stockwell et al., 2009). These aggregations support a lucrative commercial roe fishery, as fishers 112 
generally target spawning fish during November using suspended gillnets (Ebener et al., 2008). 113 
Additionally, since 2005 these aggregations have been surveyed annually using hydroacoustic 114 

surveys in Thunder Bay. Current management in Thunder Bay relies on a fixed exploitation rate 115 
control rule where 10% of spawning biomass estimated from the hydroacoustic surveys are 116 
allocated as quota in the subsequent year to a limited number of fishers. No formal assessment 117 
models have previously been developed for this or any other stock in western Lake Superior.  118 

2.2. Stock area 119 
We treated Ontario Ministry of Natural Resources and Forestry (OMNRF) Quota Management 120 

Areas 1-4 (QMAs; Fig. 1) as the stock area for Thunder Bay cisco. This stock has been 121 

hypothesized to be discrete because cisco in an adjacent embayment (i.e., Black Bay) have not 122 
shown any sign of recovery since a collapse in the 1980s. If cisco from Thunder Bay belonged to 123 
a non-discrete spawning stock that inhabited a broader geographic range, it is expected there would 124 
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have been some level of recovery in Black Bay over the last 30+ years (Ebener et al., 2008). 125 
Additionally, this area was chosen based on coverage of the hydroacoustic surveys, which 126 
generally sample over QMAs 1-4 in Thunder Bay.  127 

2.3. Data 128 

The SCAA and SCSA models made use of six main sources of observed data in the fitting 129 
process (Table 1): (1) Number of cisco > 250 mm in Thunder Bay estimated from hydroacoustic 130 
surveys (2005, 2007-2015), age- or size-composition of cisco caught in fisheries-independent (2) 131 
mid-water trawls (2005, 2007-2010, 2015) and (3) multi-mesh gillnets (2009, 2013-2015), (4) age- 132 
or size-composition of the commercial fishery catch subsamples (1999-2015), and (5) male and 133 

(6) female biomass harvested by the fishery each year (1999-2015). The SCSA made use of one 134 
additional source of data; (7) individual growth increments of cisco back-calculated from otolith 135 

increment data. Details on how data were processed for input into assessment models can be found 136 
in Fisch (2018). 137 

2.4. Process model 138 
Predicted quantities needed to compare to the observed data listed above were calculated using 139 

a variety of equations describing the stock and fishery. The assessment models ran from 1999 to 140 
2015, with parameters estimated using a Bayesian framework. The ages in the SCAA model ages 141 

began at 2 and ended at a plus group age of 15 (denoting all cisco older than 14) while the SCSA 142 
model size bins were divided in 10 mm increments beginning at 170 mm and ending at a plus 143 

group of 410 mm (denoting all cisco ≥ 410 mm). The SCSA model starting size bin of 170mm 144 
was chosen as this is effectively the minimum size for age 2 fish (Online Supplemental Fig. 1). 145 

Age or size bins are referenced throughout the manuscript with subscript j . Given the fishery 146 

operates primarily as a roe fishery, it captures a disproportionate number of females in Thunder 147 

Bay each year (81% on average; Online Supplemental Fig. 2). For this reason, it was decided to 148 
make the assessment models sex-specific, tracking the numbers of male and female fish separately 149 

through time. This is presented in subsequent equations with the subscript , denoting sex. We 150 
generally utilized model comparison criteria PSIS-LOO (Pareto smoothed importance sampling 151 

leave-one-out; Vehtari et al., 2017) to select between different parameterizations within fitting the 152 
SCAA and SCSA. PSIS-LOO is an efficient approximation of the exact cross-validation model 153 

comparison criterion, and has been shown to be asymptotically equal to the Widely Applicable 154 
Information Criterion (WAIC; Watanabe, 2010). In addition, it is more robust in cases with weak 155 
priors or influential observations (Vehtari et al., 2017), both of which occur in assessment 156 

modeling. Online Supplemental Table 1 contains an overview of different parameterizations 157 
attempted for each model and the reason some were not included in the final parameterization for 158 
either the SCAA or the SCSA.                  159 

To initialize the SCAA model, we estimated sex-specific cisco numbers at age as individual 160 
parameters for each sex/age-class combination in the first year of the assessment model. For the 161 

SCSA, sex-specific cisco abundance in the first year was estimated through a combination of size 162 

and abundance components; two estimated parameters of abundance, s  (one for each sex), 163 

multiplied by an initial size composition (non sex-specific) derived using a gamma distribution 164 
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where   and   are the estimated shape and rate of the gamma distribution, and *j  is the 166 

midpoint of size bin j. We fit models with alternative parameterizations including assuming a 167 
separate initial size composition for each sex and estimating one value of abundance, in addition 168 

to estimating two size-compositions and two abundance values, each of which did not outperform 169 
the chosen parameterization (identified above) in terms of model comparison criterion PSIS-LOO 170 
(Online Supplemental Table 1).  171 

Sex-specific numbers of cisco at each age or size in each year were calculated from the 172 
exponential survival equation 173 
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where 
syjN ,,
 denotes the number of cisco in age or size bin j  alive at the start of year y  of sex s176 

. 
', jjP  is the size transition matrix, denoting the probability that a fish in length bin j  will grow 177 

into length bin 'j  in the next time step. 
', ,j y sR is the sex and year specific number of fish that recruit 178 

into length bin 'j . 
syjF ,,
 represents the sex-specific instantaneous fishing mortality during year 179 

y  for a given age or size bin. sM  is sex-specific instantaneous natural mortality, and is assumed 180 

constant over time and ages or sizes. We decided to allow natural mortality to vary by sex because 181 
previous studies indicated male cisco may experience higher natural mortality than females 182 

(TeWinkel et al., 2002; Yule et al., 2008). In the interest of numerical stability, we added an 183 
informative prior on each natural mortality parameter based on the updated Hoenig linear model 184 
surrogate equation from Then et al. (2014).  185 

We calculated the size transition matrix, with typical element
', jjP , using growth 186 

parameters L  and K  to model an average growth increment and parameters a  and b  to model 187 

the variance in growth increment as a function of the expected growth increment 188 

                                )1)(()( K

j ejLE 

       (4) 189 

                                  )(*)( jj EbaVar       (5) 190 

We assumed sex-invariant growth because preliminary analyses indicated negligible differences 191 
in growth between the sexes both as a function of age and as a function of size. We assumed that 192 

these growth increments followed a gamma distribution and for our parameterization of the gamma 193 
probability density function (pdf; eq. 1), the relationship between the expected value and the 194 

variance and variance is given by ( )
j

j

j

E



   and 2

( )
j

j

j

Var



  , respectively.  The probability 195 

of remaining in the same length bin in the next time step, jjP ,  (the diagonal elements of the matrix), 196 

was calculated by integrating the gamma pdf ( ( | , )j j jg   ) from 0 to 5 mm (assumes fish are at 197 

midpoint of the length bin). Assuming no negative growth, the rest of the transition matrix 198 
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elements, ', jjP  ( 'j j ), were calculated by integrating from the growth increment required to 199 

reach the lower bound of length bin 'j  1( ' )  to the growth increment required to reach the upper 200 

bound of that bin  2( ' ) . 201 
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In calculations of the probability density, 
j  and  

j  were first solved for using the )( jE   and 203 

)( jV   obtained from eqs. 4 and 5. The size transition matrix was started at the 60-70mm size bin 204 

(instead of model starting size of 170mm) so as to facilitate calculation of the recruitment size 205 
distribution, further described below. The size transition matrix was also derived using data on fish 206 

smaller than the model starting size. 207 
For the SCAA, we modeled recruitment in each year as multiplicative deviations about a 208 

median recruitment level (𝜇): 209 

                                                   yyR         (7) 210 

The log of the deviations, )log( y , was assumed to be normally distributed with mean 0 and 211 

variance 
2 . 212 

                                           ),0(~)log( 2 Ny       (8) 213 

We assumed equal sex ratios at recruitment, apportioning 50% of the recruitment each year to 214 

the model starting age of each sex.   215 

                                                                             (9) 216 

where  denotes the number of cisco age 2 (model starting age) in year of sex s . Note that 217 

this model does not assume any prior relationship between the magnitude of recruitment and stock 218 

size. We modeled recruitment in the SCSA model with an added length-based component 
jp , 219 

representing the proportion of recruits going into each size class.  220 

                                                     
jyyj pRR ,
      (10) 221 

where 
yR  is modeled in the same fashion as in the SCAA. We calculated the proportion of recruits 222 

going into each length bin, 
jp  , by specifying a size distribution of fish smaller than the model 223 

starting size and growing them (within the assessment) one time step into the future according to 224 
the growth transition matrix (i.e., take a distribution of fish from bins 10-170 mm, how many of 225 
those fish and what model size bins would they be in (> 170 mm) if they grew for one time-step 226 
according to the size transition matrix).  We calculated this pre-model size distribution (size 227 

distribution of the cisco less than 170 mm) using the mean and variance in length-at-age of cisco 228 
ages 0-2 (Online Supplemental Fig. 3). To account for depletion in abundance, we weighted 229 
different ages using a natural mortality value of 0.3yr-1 (i.e., age-0 = 1, age-1 = 0.74, and age-2 = 230 

0.55). Within the SCSA, the pre-model size distribution is grown according to the size-transition 231 
matrix for one time step and the proportion of fish in each model size bin (> 170 mm) divided by 232 

ysy RN 5.0,,2 

syN ,,2 y
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the total number in size bins greater than 170 mm is 
jp . Once again, we assumed equal sex ratios 233 

at recruitment, and apportioned 50% of the recruitment each year to the model length bins of each 234 

sex, 
yjsyj RR ,,, *5.0 . Other standard approaches to estimating the recruitment size distribution 235 

in size-structured assessment models include specifying the distribution using a parametric 236 

distribution such as a normal or a gamma (Punt et al., 2013). We initially ran the SCSA model 237 
with the recruitment size distribution specified as a gamma distribution estimated using two 238 
parameters. However, the resulting recruitment distribution was implausible given a steep drop in 239 
the posterior distribution from length bin 170-180mm to 180-190mm. In addition, results of 240 
recruitment and spawning biomass from this model were nearly identical to those resulting from 241 

the SCSA parameterization described above, suggesting our results are robust to this specification 242 
of the recruitment size distribution (Online Supplemental Fig. 4).  243 

We calculated instantaneous fishing mortality for both models using 244 

syjsyj fsF ,,,        (13) 245 

where 
js  is the fishery selectivity for cisco over ages or size bins and 

syf ,
 is the fishing intensity 246 

in a given y  year for sex s . During preliminary analysis and in previous work for cisco from 247 

Lake Superior (Rick Clark, Quantitative Fisheries Center, Michigan State University, East 248 
Lansing, USA, pers. Com.), there was no clear relationship between hydroacoustic estimates of 249 
abundance and gillnet catch or catch per unit effort (CPUE). Due to this, fishery effort was not 250 

used when fitting the model. Instead we directly estimated fishing intensity in each year. 251 
We modeled fishery selectivity using a two parameter gamma function as in Deriso et al. 252 

(1985) 253 
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where   and   are gear selectivity coefficients and the denominator denotes the value that would 255 

be obtained for the numerator for a reference category, made age 7 and size bin 380-390 mm for 256 
each respective model. We initially estimated fishery selectivity parameters independently for each 257 

sex. However, in the interest of parsimony, given near identical estimates we decided to assume 258 
that the same selectivity function applied to both sexes. We chose to model fishery selectivity as 259 
time-invariant as preliminary analyses found that mesh sizes used and mean sizes at age of fish 260 
caught in the commercial fishery have remained fairly constant since 1999.  261 

2.5. Observation model 262 
Our basic approach was to use age-composition, but not size-composition data when fitting the 263 

SCAA, and size-composition, but not age-composition data when fitting the SCSA. Based on a 264 
reviewer suggestion, we also attempted to fit the SCAA only using size-composition data, as a 265 
way to evaluate whether differences in performance were more due to the process model or the 266 

data used.  This alternative model failed to converge and thus is not considered further (see 267 
Appendix for additional details). 268 

Predictions of data source 1, the hydroacoustic estimates of the number of cisco greater than 269 

250 mm, yĤ , were modeled using  270 
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where )250( mmFishP j   is the probability that a cisco in age bin j  is greater than 250 mm, L  273 

represents the terminal size bin, and   is the logarithm of the hydroacoustic survey calibration 274 

coefficient (Hulson et al., 2008), which when presented as 
e , can be referred to as hydroacoustic 275 

catchability. Given that selectivity of the hydroacoustic survey is assumed to be knife edged at 250 276 

mm (based on a target strength cutoff), where all fish become fully selected to the gear, 277 
hydroacoustic estimates of spawning stock are in theory absolute estimates of spawning stock, so 278 

 was expected to be at or very near 0. The 250 mm cutoff is used for hydroacoustic surveys in 279 
Thunder Bay as cisco of this size are generally mature (Yule et al., 2006, 2008). We applied 280 

mortality to numbers of fish-at-age or –at-length for the first 10/12ths of the year 
, ,

5

6
, ,( )

j y sZ

j y sN e


 281 

given the hydroacoustic surveys are performed during the spawning season in November. The 282 

probability that a fish of a given age is greater than 250 mm, )250( mmFishP j  , was calculated 283 

outside of the model by characterizing the size distribution of each age of cisco using mean length 284 
and variance in length at age of cisco. A full description of how this was done can be found in 285 

supplemental files (Online Supplemental Fig. 5).    286 
Predictions of the age or size composition of Thunder Bay cisco each year obtained from mid-287 

water trawls (data source 2) and multi-mesh gillnets (data source 3), were modeled using  288 
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where 
i

js  is the survey selectivity of gear i  (midwater trawls or multi-mesh gillnets) for age or 290 

size j . 
i

syjP ,,
ˆ  is the sex-specific predicted proportion at age or size caught from each survey gear 291 

in a given year. Once again we applied mortality to numbers of fish at age or length for the first 292 

10/12ths of the year (
6

5

,,

,, syjZ

syj eN


) given the survey bio-data are collected during the spawning 293 

season in November. Survey selectivity was modeled to adequately characterize the selective 294 
nature of mid-water trawl surveys and multi-mesh gillnets using a two parameter gamma function 295 

identical to the formula described for the fishery, however without a denominator to standardize 296 
the selectivity, given we were calculating relative values. We chose not to use the CPUE data from 297 
midwater trawl or multi-mesh gillnet surveys as often the gears are deliberately set on schools of 298 
fish seen from hydroacoustic gear so as to make an inference on species composition in the water 299 
column for use in separating out hydroacoustic targets. Thus we did not think mid-water trawl or 300 

multi-mesh gillnet CPUE would be reflective of abundance. 301 
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Predictions of data source 4, the age- or size-composition of the fishery catch, was modeled 302 
using the Baranov catch equation  303 
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where syjC ,,
ˆ  is the predicted number of commercially caught cisco age or size j  in year y  of 306 

sex s , and 
f

syjP ,,
ˆ  is the predicted sex-specific age or size composition of the fishery catch each 307 

year.  Predictions of data sources 5 and 6, the yield of each sex in each year, was modeled using  308 

                                             
j

sjsyjsy wCY ,,,,
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      (20) 309 

where syY ,
ˆ  is the predicted sex-specific fishery yield each year and 

sjw ,
 is the mean sex-specific 310 

weight of a commercially caught cisco age or size j . For the SCSA, this term was obtained from 311 

a weight-length regression (Fisch, 2018). For the SCAA, to account for age-length key fixed 312 

allocation bin sampling bias in mean weight-at-age (Quinn and Deriso, 1999), we calculated the 313 

adjusted average weight of a commercially caught cisco similar to )250( mmFishP j  , using 314 
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where 
sjin ,,
 is the number of fish in bin i  that are age j  of sex s , and iW is the average of the 316 

length bin endpoints converted to weight using the same weight-length relationship mentioned 317 
previously. We used 10 mm bins, the same bin sizes used in the age-length key  sampling 318 

procedure.  319 
Predictions of data source 7, the individual cisco growth increments, which were only used in 320 

the SCSA, were calculated using   321 

                                                )1)(()( K

l elLE 
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                                                 )(*)( ll EbaVar      (23) 323 

where l  represents the starting length of a cisco (length at start of annulus) and )( lE  denotes the 324 

expected growth increment of a cisco given starting length.  325 

2.5.1. Aging Error 326 
Aging error was included in the SCAA model by multiplying the model-predicted catch-at-age 327 

and the predicted relative catch-at-age from survey gear by an aging error matrix. The aging error 328 
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matrix, was estimated by characterizing the expected coded age ( )jE C  given true age j and the 329 

coefficient of variation of coded age given true age as linear functions.  330 

                                               ( ) *jC c d j         (24) 331 

                                              ( ) *jCV C e f j        (25) 332 

where c , d , e , and f  are estimated parameters. For ease of computation, given preliminary fits 333 

suggested c  and f  were ≈ 0, further runs of the model fixed both parameters at zero. The 334 

probability that a fish would be assigned coded age i  given its true age j , the  ,i j  element of 335 

the aging error matrix, was computed using the difference in the cumulative distribution function 336 

(CDF) of the lognormal distribution, between ages 0.5i   and 0.5i   based on ( )jE C  and 337 

( )jCV C . The plus group was calculated as 1 minus the CDF of 14.5. The predicted “true” catch-338 

at-age matrix (i.e., without aging error), output by the model, was multiplied by the aging error 339 
matrix to obtain the predicted catch-at-age matrix used in calculations of the predicted age-340 

composition of the catch. The same was done for the predicted relative catch-at-age from the 341 
survey, which was multiplied by the aging error matrix prior to calculating predicted survey age-342 

compositions. 343 

2.5.2. Likelihood 344 

We calculated the log likelihood components, iL , for data sources 1, 5, and 6 (hydroacoustic 345 

survey index and annual sex-specific yields) in each model through a lognormal likelihood (with 346 
additive constants dropped) 347 

                                   
y
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1 2

,,2
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
     (26) 348 

where i  is the standard deviation for likelihood component i , 
yix ,
 and 

yix ,
ˆ  are the observed and 349 

model-predicted values for year y , and n  is the number of observations.  350 

The log likelihood components for data sources 2, 3, and 4 for the SCAA (i.e., the age 351 

compositions) assumed a robust multinomial likelihood equation as in Starr et al. (1999)  352 
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(27)                                353 

where 
yiN ,

~
 denotes the effective sample size from data source i  in year y , 

yjip ,,
 and 

yjip ,,
ˆ  are the 354 

observed and predicted proportions of cisco in year y  that are in age by sex category j from data 355 

source i , and Nb  represents the number of age by sex bins. Robust likelihoods aid in keeping a 356 

small number of outlier composition data points from unduly influencing model fit (Fournier et al. 357 

1990; Francis 2011). This is especially important given the nature of cisco year classes in western 358 
Lake Superior, which exhibit a “boom-or-bust” pattern where there may be a very large cohort 359 

moving through the time series followed by many years of almost no recruitment (Online 360 
Supplemental Fig. 6). For the SCSA, given we expect less outlier composition data points as 361 
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disparity in year-class strength is reduced due to recruitment into size bins (Online Supplemental 362 
Fig. 7), we utilized a regular multinomial likelihood  363 

                                          )ˆlog(
~

,,,,, yji

j

yji

y

yii ppNL       (28) 364 

where 
yjip ,,
 and 

yjip ,,
ˆ  are the observed and predicted proportions of cisco in year y  that are in 365 

size by sex bin j from data source i . We initially attempted to fit the SCSA using the robust 366 
multinomial likelihood for composition data similar to the SCAA however found that it ultimately 367 
led to implausibly low effective sample sizes and very poor fits to the fishery-independent size 368 

composition data. For all composition data in the SCAA and SCSA models, both sexes went into 369 

one likelihood for each i , meaning only one value of 
yiN ,

~
 was used for each data source. This 370 

results in double the number of bins (compared to just size bins or age categories) for each i , to 371 
account for both males and females. 372 

Data source 7, the individual growth increment data, which was only used in the SCSA, were 373 
assumed to come from a gamma distribution, with a gamma log likelihood 374 

 7 log( ) log( ( )) ( 1)log( )l l l l l l l

l

L               (29) 375 

where and l  and l  are the shape and rate parameters of the gamma distribution, and  l  denotes 376 

an observed growth increment of a cisco with starting length l .  377 

Log prior components for natural mortality and recruitment deviations that were not compared 378 
to data, but rather to expectations specified as informative priors also contributed to the objective 379 
function through a normal prior distribution 380 
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    (30) 381 

where 
jix ,

ˆ  represents the model predicted deviations. 382 

The objective function was then the negative sum of the log likelihood and log prior 383 

components 384 

                                                              
i

iLL       (31) 385 

2.5.3. Data weighting  386 

Standard deviations, i , in likelihood equations for data sources 1, 5 and 6, and for recruitment 387 

deviations, were modeled as one estimated parameter and two assumed variance ratios, denoting 388 

what we might expect the multiplicative difference in standard deviations to be. We expected the 389 

fishery harvest (data sources 5 and 6, sharing a  ) to have the smallest standard deviation (< 0.1), 390 
based on a well-developed catch reporting system with extensive monitoring for Thunder Bay 391 
cisco. We expected the hydroacoustic standard deviation to be < 1 based on within year CVs for 392 

hydroacoustic data (variability among segments) being less than 1. Lastly, from meta-analyses of 393 
recruitment deviation suggesting sd of ≈0.71 for the order Salmoniformes (Thorson et al., 2014), 394 
we expected cisco recruitment variability to be greater given the substantial differences in cohort 395 

strength among years (Online Supplemental Fig. 6). We estimated the standard deviation for 396 



12 
 

fishery harvest, while assuming variance ratios (Vr ) of 0.04 and 0.0004 for hydroacoustic 397 
estimates of abundance and recruitment deviations, respectively. 398 

                                            
21
fi

Vr
        (32) 399 

where 
f  denotes the standard deviation for fishery harvests. During preliminary analyses, we 400 

adjusted variances ratios so that the variances set by ratios were reasonable consistent with prior 401 
expectations. The model results were largely insensitive to these. 402 

Effective sample sizes, 
yiN ,

~
, for the composition datasets were calculated using the iterative 403 

reweighting procedure T3.4 of Francis (2011): 404 

                                                   
iyiyi wNN ,,

~
      (33) 405 

where 
yiN ,
 denotes the previous iterations effective sample size. iw  was calculated using TA1.8 406 

of Francis (2011): 407 
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where , , ,*i y j i j y

j

O x O  and 
, , ,*i y j i j y

j

E x E  are the observed and expected mean ages or 409 

lengths and 
2 2

, , , ,( )i y j i j y i y

j

v x E E   is the variance of the expected distribution of age or length 410 

calculated over sexes for each year.  In these formulas, i  denotes a composition data set (age or 411 

size; commercial fishery, mid-water-trawl survey (MWT), or multi-mesh gillnet survey), j  412 

denotes age or size by sex bin, and xj is the age or length (bin midpoint) for bin j. The initial 413 

effective sample sizes were set at the total number of fish sampled in a year. We fit the models 414 
iteratively (changing effective sample sizes) using penalized maximum likelihood estimation until 415 
effective sample sizes converged on values within one unit of the previous iteration’s value. Once 416 

effective sample sizes converged, the models were run using Bayesian methods. All models were 417 
run in Automatic Differentiation Model Builder (ADMB; Fournier et al., 2012). Effective sample 418 
sizes for the SCAA converged on 62, 45, and 50 for the fishery, MWT, and multi-mesh gillnet 419 
compositions, respectively. Similarly, effective sample sizes for the SCSA converged on 58, 22, 420 

and 11 for the fishery, MWT, and multi-mesh gillnet compositions, respectively. 421 

2.6. Model fitting/calibration/troubleshooting  422 
2.6.1. SCAA 423 

The SCAA model was unable to converge on an estimate of  , which denotes the logarithm 424 

of hydroacoustic catchability. Essentially this parameter scales our entire population by 425 

representing what proportion of spawning cisco the hydroacoustic survey is actually detecting. We 426 

decided to assume a conservative scenario where 0 , which assumes the hydroacoustic survey 427 

is an absolute index of spawner abundance. By conservative, we mean that actual catchability is 428 

likely lower and abundance is likely higher. This in turn means that quotas calculated when 0  429 
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will likely be lower than if the target exploitation rate were applied to an abundance estimate when 430 

0  . The hydroacoustic surveys are generally thought to be a conservative estimate of 431 

abundance as all areas of the water column are not sampled effectively with the gear (Yule et al., 432 

2012). The MCMC sampler was run for 10 million iterations each saving every 500th, dropping 433 
the first 2,500 values from the saved chains as a burn-in period when summarizing posterior 434 
distributions. Chain burn in was assessed visually and convergence determined using Geweke’s 435 
convergence diagnostic (Geweke, 1991). Long single chains or multiple chains are alternative 436 
reasonable approaches to checking MCMC convergence (Cowles and Carlin, 1994). We elected 437 

for a long single chain because we had the computing power to do so. For long single chains, 438 

Geweke’s diagnostic (Geweke, 1991) is a common statistic used to diagnose non-convergence of 439 

a MCMC chain (Cowles and Carlin, 1994). In addition to results from the Geweke’s diagnostic, 440 
we did start chains from alternative starting points and found that our results were not sensitive to 441 
this.   442 

2.6.2. SCSA  443 

It became clear at the start of model calibration for the SCSA that the model was going to be 444 
unable to output plausible estimates of natural mortality (M). The model would confound estimates 445 

of recruitment, selectivity, and natural mortality. It was unable to converge on plausible estimates 446 
of natural mortality even when given assumed known growth parameters at levels previously 447 
estimated using fixed natural mortality at prior point estimates. The model would increase natural 448 

mortality to an implausibly high value, inflate recruitment, and make larger fish more selected. 449 

What the model was doing was creating many fish through recruitment, killing them off at high 450 
rates through natural mortality in order to have enough fish at spawning sizes to fit the 451 
hydroacoustic data. Few large fish were predicted to survive, but fishery selectivity was highest 452 

for the largest fish to fit the fishery composition data. We confirmed the confounding of natural 453 
mortality with selectivity and recruitment by fixing M at a range of alternative values (with 454 

hydroacoustic catchability fixed), which led to substantial changes in recruitment and selectivity 455 
but little overall change in model fit when M was increased. Similar to the SCAA, the SCSA was 456 
also unable to converge on an estimate of hydroacoustic catchability. Given these issues, we 457 

decided to fix natural mortality at its prior point estimates (0.283yr-1 for males, 0.256 yr-1 for 458 

females), fix hydroacoustic catchability at 1 ( 0 ), and estimate growth.  We ran the model for 459 

double the number of samples (20 million) and also doubled chain burn in (first 5,000 iterations 460 

of the saved chain). Likelihood profiles over   for each model and over M  for the SCSA can be 461 

found in Online Supplemental Fig. 8.  462 

2.7. Comparison 463 
Given different data used in each assessment, it was not possible to compare the final models 464 

in terms of predictive accuracy/information theoretic measures such as PSIS-LOO, WAIC, or DIC. 465 
Instead, final models were compared using a variety of criteria. First, we considered what 466 
assumptions we had to make to fit each model. We also looked at retrospective patterns, 467 
parameter/output uncertainty and model fit/residuals. We also fit an additional SCAA model with 468 

fixed natural mortalities (at the same values fixed in the SCSA) so as to be able to compare 469 
uncertainty and retrospective patterns for both models when natural mortality was fixed. 470 
Retrospective analyses primarily focused on spawning biomass and exploitation rate. Mohn’s rho 471 

(Mohn, 1999) was calculated for spawning biomass and exploitation rate as the mean relative error 472 
for the last year of each peel compared to the corresponding year in the last assessment.  473 
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where Y is the assessment output quantity, either spawning biomass or exploitation rate, ref refers 475 

to the last assessment, and F  refers to the final year of a given assessment peel, p . Five years 476 

were removed from the assessment. We also calculated a mean final year absolute difference for 477 
the retrospective analyses, as the mean absolute value of the relative error for the last year of each 478 
peel compared to the corresponding year in the full assessment. This statistic considers the 479 
difference in estimates in the final year of each peel to the reference assessment as opposed to 480 

whether or not there is a consistent pattern.  481 
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We refer to   as a “precision indicator” because the last assessment is typically viewed as 483 

producing more precise estimates than do the peels in their terminal years. Whereas   can provide 484 

useful information to potentially diagnose model misspecification (Hurtado-Ferro et al., 2015),   485 

can provide useful information on the quality of your model estimates based on how much they 486 

change as data are removed, regardless of a consistent pattern. Statistics   and   were calculated 487 

using medians of the posterior distribution as point estimates.  488 
Residuals for common data sources were compared using the standard deviation of the 489 

normalized residuals (SDNR, Breen et al., 2003; Francis, 2011; Carvalho et al., 2017). These were 490 

calculated as the standard deviation of the normalized residual for each data point (formulas in 491 
Table B1 in Francis 2011). A relatively good model fit is characterized by smaller residuals and a 492 

SDNR near 1 (Carvalho et al., 2017), although Francis (2011) notes that a value much less than 1 493 
is not a cause for concern, but rather means that the data set is fitted better than was expected. Due 494 
to their correlative nature, composition data points cannot be compared using this metric (Francis, 495 

2011), so these were compared visually.    496 

3. Results 497 
Point estimates of quantities output from the models are reported as medians of the posterior 498 

distribution, with 95% highest posterior density (HPD) intervals reported in parentheses. The 499 

SCAA estimated a total of 89 parameters while the SCSA estimated 67 parameters. All parameters 500 
in each model indicated convergence based on Geweke’s diagnostic at an alpha level of 0.01. Two 501 
parameters for the SCAA (one initial abundance and one recruitment deviation parameter) 502 
compared to nine parameters in the SCSA (three fishing intensities, five recruitment deviations, 503 
plus the male initial abundance scaler) produced a Geweke’s diagnostic that was significant at an 504 

alpha level of 0.05. Natural mortality estimates within the SCAA for males and females were 505 
0.285yr-1 (0.212-0.371) and 0.253 yr-1 (0.178-0.340) respectively.  506 

3.1. Spawning biomass 507 
SCAA spawning biomass, defined as the mature female biomass (>250 mm), began at 4.99 508 

(2.07-11.12) million kg, initially declined then rose to an estimate of 4.90 (2.87-8.01) million kg 509 

in 2006 and ended the time series at 0.95 (0.58-1.40) million kg (Fig. 2). For the SCAA model 510 
with fixed natural mortality values, point estimates and 95% HPD intervals for spawning biomass 511 
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in 1999, 2006, and 2015 were 5.26 (3.36-7.88), 5.02 (3.92-6.32), and 0.95 (0.64-1.33), respectively 512 
(Fig. 2).  SCSA spawning biomass increased from 2.04 (1.26-3.43) million kg at the start of the 513 
time series to a peak of 3.01 (2.15-3.97) million kg in 2008 before decreasing to 1.45 (0.98-2.03) 514 
million kg in the final year, 2015.  515 

3.2. Exploitation rate  516 
Exploitation rate was defined as yield divided by the biomass of fish larger than 250 mm. 517 

Exploitation in the SCAA was modest throughout the time series, hovering around 3.5%, although 518 
in 2010 began to increase resulting in a final year estimate of 9.1% (5.5%-13.5%; Fig. 2). This 519 
resulted in fully-selected fishing mortality rate estimates of 0.08yr-1 (0.04-0.12) and 0.20 yr-1 (0.11-520 

0.32) for males and females in 2015, respectively. For the SCSA, exploitation rate decreased from 521 
8% (4%-13%) at the start of the time series to 3% (2%-4%) in 2007 and increased throughout the 522 

rest of the time series to a final year estimate of 6% (4%-8%). Final year fully-selected fishing 523 
mortality rates were 0.05 yr-1 (0.03-0.08) and 0.17 yr-1 (0.10-0.25) for males and females.  524 

3.3. Recruitment  525 
As expected, recruitment was highly variable throughout the time series, with evidence of ~4 526 

“boom” recruitment years in the SCAA, belonging to 1998, 2003, 2005, and 2009 year classes. 527 
Estimates of recruitment (age-2 fish) for these years (2000, 2005, 2007, and 2011) were 19.27 528 

(7.08-41.86), 36.84 (18.76-64.99), 1.87 (0.87-3.32), and 4.40 (2.33-7.17) million fish, respectively 529 
(Fig. 3). Recruitment was low for 10 of the years (i.e., estimated to be around 15,000 fish). 530 

Recruitment for the 3 remaining years were estimated at modestly low values, with estimates 531 
ranging from 0.86 (0 -1.89) million in 2004 to 0.21 (0-1.01) million fish in 1999. 532 

Recruitment in the SCSA showed a similar trend to SCAA recruitment with 3-4 clear modes 533 
most likely attributed to the introduction of fish >170 mm from the 1998, 2003, 2005, and 2009 534 
“boom” year classes (Fig. 3).  535 

3.4. Abundance 536 
SCAA abundance echoed spawning biomass results, with intermittent spikes due to “boom” 537 

recruitment years and an overall declining trend at the end of the time-series. In 1999 the model 538 
predicted there were around 12.71 (5.30-28.53) million cisco, a high of 44.25 (23.36-77.21) 539 

million estimated in 2005, and in the final year 3.90 (2.49-5.73) million (Fig. 2). SCSA-540 
predicted abundance began the time series at 8.02 (3.92-14.42) million fish, 30.95 (21.31-41.30) 541 

million fish at its peak in 2005, followed by a decrease to around 5.60 (3.60-8.48) million fish in 542 
2015.  543 

3.5. Aging error  544 
Very little aging error was estimated within the SCAA model. Approximately no bias was 545 

estimated in aging as true age increased ( d  ≈ 1.00, Table 2), and the estimated CV ( e  = 0.02, 546 
Table 2) was very low.  547 

3.6. Growth  548 

L  and K  were estimated at 428 mm (419-438) and 0.28 (0.25-0.31), respectively (Fig. 4). 549 

Estimates for growth variance parameters a  and b  were 124.82 (32.25-252.62) and 2.68 (0.60-550 

7.19), respectively. 551 
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3.7. Retrospective analyses 552 
Retrospective patterns for the latter half of the time series for each model were very similar 553 

(Fig. 5). Mohn’s ρ estimates for spawning biomass and exploitation rate were both ≈ 0 for the 554 

SCAA and 0.19 and -0.13 for the SCSA, respectively. All of these 𝜌 values are within a range of 555 
values deemed “not a cause for concern” in retrospective analyses (Hurtado-Ferro et. al., 2015). 556 

Precision indicators ( ) for spawning biomass and exploitation rate were 0.16 and 0.18 for the 557 

SCAA and 0.21 and 0.16 for the SCSA, respectively. Retrospective statistics for the SCAA model 558 

fit with fixed natural mortalities were ≈ 0 and 0.02 for   and 0.11 and 0.14 for   with reference 559 

to spawning biomass and exploitation rate, respectively (Fig. 5).  560 

3.8. Model fit to data  561 
Assessment model fits to the hydroacoustic data were very similar (Fig. 6). Both assessments 562 

treated the observed hydroacoustic spawning abundance estimate in 2011 as an outlier. Outside of 563 
that outlier data point, both models predicted a near linear decline in spawning abundance since 564 
2005, in accordance with the observed data points. The median of the negative log-likelihood for 565 

the fit to hydroacoustic data was lower for the SCAA (Table 3). SDNR values for the hydroacoustic 566 
data were also closer to 1 for the SCAA, indicating better fit.  567 

Fits to harvest data were nearly identical between the assessments (Online Supplemental Fig. 568 

9). HPD intervals were slightly smaller for the SCSA model. The medians of the negative log-569 
likelihoods for male and female harvest were lower for the SCSA (Table 3), and the SDNR values 570 

were smaller for the SCSA. Both model SDNR yield values were well below 1, indicating better 571 
model fit than expected.  572 

Both models fit the fishery composition data points well (see Online Supplemental Figs 10-573 
17). These two fits cannot be directly compared as they used different data. 574 

3.9. Computational intensity 575 

The SCSA was considerably more computationally intensive than the SCAA, requiring about 576 
5x the run time for the same number of iterations (where the SCAA took ≈3.5 hours for 10 million, 577 

the SCSA took ≈35 hours for 20 million). 578 

4. Discussion 579 
Overall both models showed similar trends in outputs and modest differences in final year 580 

estimates (Fig. 2). However, the SCAA model had a larger degree of uncertainty during the first 581 

half of the time series, which decreased throughout the second half of the time series to actually 582 
end up being less than SCSA uncertainty in the final year (Fig. 2). This decrease in uncertainty 583 
and the relative change for the SCAA relative to the SCSA is not just a scaling effect due to the 584 
different stock size estimates.  The coefficient of variation (CV, calculated as the MCMC-based 585 
standard deviation divided by the median estimate) for spawning biomass declined from 0.6 at the 586 

start in 1999 to values between 0.15 and 0.3 during 2010-2016 for the SCAA, whereas the SCSA 587 
had a CV of about 0.3 in 1999, and similar CVs as the SCAA during 2010-2016.  This disparity in 588 
uncertainty at the beginning of the time series is likely due to differences in the initial 589 

parameterization of each model, where much more flexibility was afforded to the SCAA by 590 
estimating 26 initial abundance parameters (one for each age-sex combination above recruitment 591 
age). Conversely, the SCSA estimated only four initial abundance parameters; two for the initial 592 
size composition, and one for each sex as abundance scalars. Increased certainty in the SCSA 593 

during most of the time series may also be driven by the assumption of known natural mortality 594 
values. In fact, when we re-ran the SCAA with assumed known natural mortalities at their prior 595 
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point estimates, uncertainty in model output decreased substantially (Fig. 2), indicating that the 596 
certainty in output expressed by the SCSA is likely in some part due to assuming known natural 597 
mortality values.  598 

In terms of model fit, the SCAA had better fit to the hydroacoustic data while the SCSA had 599 

better fit to the yield data [although the slightly better fit of the SCSA to yield may not be all that 600 
significant, as all yield SNDRs were well below 1, indicating better fit than expected by each 601 

model; Francis, 2011]. For the retrospective analysis, where   estimates were larger for the 602 

SCSA, upon visual inspection the patterns appear comparable between the two assessments, if not 603 
worse for the SCAA, specifically at the start of the time series (Fig. 5). The large discrepancies 604 
between the two retrospective patterns prior to 2005 are likely due once again to the flexibility 605 

afforded to the SCAA in initial abundance parameterization, resulting in highly variable initial 606 

abundances for each peel in the SCAA. This result of smaller   estimates for the SCAA even 607 

though patterns may appear more severe if not equal to those in the SCSA is driven by equally 608 
large deviations in the terminal years of peels for the SCAA in opposite directions (i.e., not a 609 

consistent pattern but equal numbers of over and under estimates). Given no   estimates are at 610 

values considered “cause for concern” (Hurtado-Ferro et al., 2015), in this study it may be more 611 

prudent to consider   in comparing retrospective analyses, which was larger for exploitation rate 612 

and smaller for spawning biomass for the SCAA compared to the SCSA. Once again, it is likely 613 
that assuming known natural mortality values at their prior point estimates led to both a smaller 614 

  estimate for exploitation rate and the appearance of less severe retrospective patterns within the 615 

SCSA. When we re-ran the SCAA retrospective analysis with assumed known natural mortality 616 

values at their prior point estimates, the precision indicator ( ) decreased. In fact, all retrospective 617 
statistics were lower (closer to 0 for ρ) for the SCAA with assumed known natural mortality than 618 

the SCSA counterparts (Fig. 5).  619 
An important result of our study is the inability to estimate natural mortality within the SCSA. 620 

Given natural mortality is one of the most influential quantities in stock assessment and its 621 

estimation within an assessment can be difficult (Lee et al., 2011; Brodziak at al., 2011; Sippel et 622 
al., 2017), the ability to estimate this parameter in the SCAA certainly favors the SCAA as an 623 

assessment model choice. An interesting note is the remarkable similarity of the prior natural 624 
mortality point estimates (the fixed, assumed known SCSA M values; 0.283yr-1 and 0.256 yr-1) to 625 

the estimated natural mortality point estimates for the SCAA. This is not an artifact of an influential 626 
prior; when we ran the SCAA model without specifying informative priors on natural mortality, a 627 

similar result occurred (Male M = 0.284 yr-1, Female M = 0.252 yr-1), suggesting that the age-628 
composition data are providing crucial information on natural mortality. The similarity between 629 
assumed known natural mortality in the SCSA and estimated natural mortality in the SCAA in 630 
addition to the utilization of the same hydroacoustic and yield data likely led to similar output 631 
between the two assessments.  632 

The inability to estimate natural mortality within the SCSA due to its confounding with 633 
estimates of recruitment and selectivity is not a new finding, as parameter confounding has been 634 
noted to be potentially more serious in size-structured assessments (Punt et al., 2013). Where 635 
parameter confounding here did not change growth parameters much (mainly influenced 636 

selectivity, recruitment, and natural mortality), its underlying cause may have been variation in 637 
individual growth, such that variation in size-at-age makes it hard for size-structured models to 638 
discern cohorts from length-composition data (Punt et al., 2013). Even when we assumed growth 639 

was known within the SCSA, the model still confounded selectivity, recruitment, and natural 640 
mortality. Another aspect that may have led to the inability to estimate natural mortality within the 641 
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SCSA is the range of vulnerability to the fishery for cisco in Thunder Bay, where by the time cisco 642 
start to show up in the fishery length-compositions they are at or very near asymptotic size (Online 643 
Supplemental Fig. 7). This results in similarity in fishery size-composition data between years 644 
making it difficult to observe strong year classes pulse through the fishery composition data. While 645 

the fishery-independent survey gear does select smaller fish and is, to some extent, able to discern 646 
cohorts from its length-composition data (likely why recruitment in SCSA for 2003 and 2005 647 
cohorts were approximated well), our survey composition data was limited, only having started in 648 
2005 and missing critical years in 2006 and 2011-2012. The missing survey data pre-2005 and in 649 
2011-2012 likely resulted in recruitment of the 1998 cohort being spread over ~5 years and 650 

recruitment of the 2009 cohort entering the population in 2010 in the SCSA (as opposed to 2011, 651 

Fig. 3). Where temporal variation in growth could have caused this, we find it less plausible 652 

because for the years for which survey composition data are available length distributions given 653 
age were fairly constant over time, and the mismatch of recruitment timing occurred when the 654 
survey composition data were lacking but not when they were not (i.e., 1998 & 2009 vs 2003 & 655 
2005 cohorts). Fishery-independent survey size-composition data throughout the full time series 656 

would have likely resulted in a better approximation of year-class strength and possibly allowed 657 
estimation of natural mortality within the SCSA. Alternatively, in the SCAA model, likely due to 658 

the boom-or-bust recruitment pattern, the model was clearly able to distinguish 3-4 large year 659 
classes moving through the fishery and estimate their associated depletion. Estimation of natural 660 
mortality within the SCAA may also have been made possible by relatively light exploitation, 661 

effectively making the major source of mortality and transition through the population-age matrix 662 

one of natural depletion.  663 
Estimation of natural mortality within size structured assessments is possible. Punt et al. (2013) 664 

reviewed integrated size-structured assessment methods and two out of nine assessments that were 665 

reviewed in depth estimated natural mortality within the assessment. One of the assessments 666 
modeled selectivity as logistic (Fu and Mckenzie, 2010) and the other modeled it as a double 667 

normal (Breen et al., 2009; Starr et al., 2009), while both modeled recruitment as lognormal 668 
deviates entering the population through a specified size distribution. These selectivity functions 669 
are less flexible than a gamma function, which may indicate a reason they did not experience 670 

parameter confounding to the extent we did with regard to natural mortality, selectivity and 671 
recruitment. However, even if we fixed selectivity and growth at values estimated using assumed 672 

known natural mortalities, and then tried to estimate natural mortality, the SCSA model would still 673 
inflate recruitment and estimate implausibly high natural mortalities. Where some size-structured 674 
models may indeed be able to estimate natural mortality, our study indicates that this may be an 675 
even taller task than it is in SCAA models, and depends on a multitude of factors from 676 

variability/patterns in recruitment, variability in growth and size at age, and vulnerability range of 677 
organisms within size composition data. In addition, our study utilized otolith increment data to 678 
estimate the growth transition matrix, whereas in many SCSA models tagging data are used for 679 
this purpose (Punt et al., 2013, 2016). Theoretically tagging data can also be used to provide 680 
information on mortality rates, and thus may influence the ability to estimate natural mortality 681 

within the model. However, they are not often used in this fashion because of concerns over tag-682 

loss and tag-reporting rates (Punt et al., 2013).     683 

4.1. Conclusions and recommendations 684 
Although more uncertain, primarily due to the ability to estimate natural mortality, we 685 

conclude that the SCAA is more appropriate for modeling population dynamics of cisco in the 686 
Lake Superior. While size-based assessment models can considerably decrease the amount of fish 687 



19 
 

that need to be aged, as this study shows, age-composition data can be crucial to the ability to 688 
estimate natural mortality and recruitment within a model. We prefer not to rely on assumed known 689 
scale parameters (e.g., hydroacoustic catchability) and natural mortalities, if this can be avoided. 690 
Where the assessments both resulted in similar natural mortality estimates, in other case studies 691 

this may not occur, and using a surrogate equation for natural mortality may result in biased 692 
assessment output. In addition, assuming known natural mortality may artificially decrease model 693 
uncertainty. We do not necessarily expect this conclusion to apply for all, or even most species. In 694 
fact, this result is likely largely driven by the specific life history of cisco and data availability for 695 
the Thunder Bay stock in Lake Superior. Boom-or-bust recruitment most likely facilitated 696 

estimation of natural mortality within the SCAA. For the SCSA, however, the fact that most 697 

growth occurs before cisco are vulnerable to the fishery, and in some years fishery-independent 698 

data that do sample cisco at sizes where they exhibit rapid growth were not available, made the 699 
estimation of natural mortality and relative year-class strength difficult within the model. For 700 
species with less variable recruitment, less variable growth, and more size-composition data 701 
available throughout the growth period of their life span, size-based assessment methods may 702 

perform equally well, or better, than age-structured methods. In this specific case study, were a 703 
SCSA to replace a SCAA for Thunder Bay cisco, perceived stock biomass would be higher and 704 

perceived exploitation rate lower. If the SCSA model were to be used to calculate quotas, they 705 
would likely be increased compared to quotas calculated using the SCAA. For stocks with no age 706 
data available, if a fishery is targeting individuals at asymptotic size, an onus should be placed on 707 

the collection of fishery-independent composition data that targets individuals of smaller sizes so 708 

as to provide an assessment model with more informative data on natural mortality and relative 709 
year-class strength. In addition, our inability to get an age-structured model to fit to size- 710 
composition data may suggest that size-structured models are more appropriate when stocks do 711 

not have much age data. 712 
Our conclusion, that the SCAA was more appropriate than the SCSA when applied to cisco, is 713 

driven by our desire to estimate natural mortality, and our concern that the SCSA recruitment 714 
estimates are not reliable.  While it is tempting to contrast our conclusion with other comparisons 715 
of size- and age-based assessment models (Akselrud et al., 2017; Punt et al., 2017), those studies 716 

did not attempt to estimate natural mortality within the assessment models. While Punt et al., 717 
(2017) concluded that age-structured methods performed poorest and Akselrud et al., (2017) 718 

concluded that age-structured methods fit the data best, we believe that the conclusions of these 719 
studies might depend on their assumption that natural mortality was known. Akselrud et al., (2017) 720 
and Punt et al., (2017) also considered a third type of assessment model that take into account both 721 
age- and size-based processes in their analyses. Where these age-size models may improve 722 

assessment accuracy (Gilbert et al., 2006; McGarvey et al., 2007; Punt et al., 2017), they are also 723 
very computationally intensive. We did not consider them in our analyses. It is possible that an 724 
age- and size-structured model could outperform both SCAA and SCSA in application to cisco in 725 
Thunder Bay. It is also possible to fit both age- and size-composition data within a SCAA (Methot 726 
and Wetzel, 2013). We did not pursue this approach because we assumed adding size-composition 727 

data to an age-structured model already fit to informative age-composition data would provide 728 

little benefit. However, we cannot rule out that such an approach could have outperformed the 729 

SCAA and SCSA defined in our analysis for Thunder Bay cisco. Additionally, while we believe 730 
the comparisons we made and conclusion we reached in preferring the age-based model is valid, 731 
we cannot be sure that the estimated population sizes and mortality rates are closer to true values 732 
than those generated by a size-based model, given the truth is not known. Further, our analysis 733 
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cannot define the conditions under which the natural mortality is estimable and produces useable 734 
assessment results, as we had only one data set resulting from one set of conditions.  This is an 735 
advantage of simulations such as those of Punt et al. (2017) over empirical comparisons of 736 
alternative models as shown here. Our empirical comparisons highlighted some aspects of the 737 

performance of size- and age-based models contrasted in a real world application and thus can 738 
point the way for future simulations. More work is needed that directly investigates the ability to 739 
estimate natural mortality and other parameters within size-structured assessment models both 740 
from a simulation perspective and in empirical assessments. 741 
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Appendix 756 
We attempted to fit the SCAA to size-composition data, hereafter referred to as SCAA-CL (Catch-757 
at-Length). The changes from the original SCAA parameterization were as follows:  758 

1) Size-composition data replaced age-composition data for the fishery and survey gears.  759 

2) Aging error was dropped from the model. 760 

3) Mean length-at-age was calculated using a Von-Bertalanffy growth function where L , 761 

ot , and K  were estimated as parameters.  762 

4) Standard deviation of length-at-age was specified as a linear function of mean size-at-age, 763 
with two estimated parameters (intercept and slope).  764 

5) The size-at-age distribution was specified using a normal distribution (using mean and SD 765 
described above).  766 

6) Predicted catch-at-age was converted to catch-at-size and then multiplied by a weight-767 
length function to predict yield (previously catch-at-age was multiplied by mean weight-768 
at-age). 769 

7) Selectivity of the hydroacoustic survey was specified as length-based (all fish over 770 

250mm). Previously this was specified as the probability that a fish of a given age is greater 771 
than 250mm.  772 

The model ran into some severe issues, which were very similar to those encountered with the 773 

SCSA. The main problem the model had was an inability to output reliable estimates of selectivity. 774 
It would estimate an exponential increase past the age at which asymptotic size begins (~8) for the 775 

fishery selectivity. This occurred regardless of whether natural mortality or growth was estimated 776 
or fixed. The problem, similar to the SCSA, is that the model can track ages 2-8 as fish are growing 777 

(only when there are fishery-independent survey compositions). However, once growth stops the 778 
model has very little information to inform it for ages 9-15. In the original age-structured model, 779 

the model could follow these cohorts late into senescence using information from the age-780 
compositions. However, all old ages in the SCAA-CL have nearly the same size-at-age 781 
distribution, thus the model once again necessitates composition data on young fish as they are 782 

growing to inform it on relative year class strength and selectivity. These problems were more 783 
severe in the SCAA-CL than the SCSA likely due to reasons such as age- vs size-based selectivity, 784 

or the transition through age bins (when all old fish have the same size-at-age distribution) vs 785 

transitioning through size bins. 786 
787 
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Table 1. Data source years for each assessment and input sample sizes for each year of composition 914 
data. An X denotes that a data source was available for that year in each assessment. The word 915 
“Composition” refers to both age and length composition data.  916 

 917 

918 

Year 
Hydroacoustic 

Survey 

Fishery 

Harvest 

Fishery 

Composition 

MWT Survey 

Composition 

Gillnet Survey 

Composition 

1999  X X – 860   

2000  X X – 3241   

2001  X X – 1221   

2002  X X – 1147   

2003  X X – 1208   

2004  X X – 1091   

2005 X X X – 661  X – 794  

2006  X X – 644   

2007 X X X – 839 X – 1845  

2008 X X X – 654 X – 559  

2009 X X X – 638 X – 994 X – 302 

2010 X X X – 500 X – 520   

2011 X X X – 563   

2012 X X X – 478   

2013 X X X – 429  X – 678 

2014 X X X – 733   X – 135 

2015 X X X – 705 X – 478  X – 824 
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Table 2. Posterior point estimates (medians) and standard deviations in parentheses for parameters 919 
in each assessment model. Priors specified are presented in column 4. Fixed parameters are in 920 
bold. NA indicates a parameter that was not used for a given model (e.g., aging error for SCSA). 921 
Parameters excluded from this table include recruitment deviations, sex- and age-specific initial 922 

abundance parameters for the SCAA, and fishing intensities.  923 

Parameter SCAA SCSA Priors 

Male Natural Mortality - mM  (log scale) -1.255 

(0.14) 

-1.261 N(-1.26, 0.44) 

Female Natural Mortality - 
fM  (log scale) -1.374 

(0.16) 

-1.362 N(-1.36, 0.44) 

Median Recruitment -   (log scale) 10.92 (0.85) 13.52 (0.40) U(5, 20) 

Fishery Harvest SD - 
f  (log scale) -2.40 (0.16) -2.53 (0.15) U(-5, 5) 

Initial Size Distribution Gamma Shape -  (log scale) NA 2.95 (0.31) U(-10, 5) 

Initial Size Distribution Gamma Rate -   (log scale) NA -2.34 (0.30) U(-5, 10) 

Male Initial Abundance Scalar - m  (log scale) NA 13.61 (0.47) U(1, 25) 

Female Initial Abundance Scalar - 
f  (log scale) NA 15.26 (0.22) U(1, 25) 

Fishery Selectivity Parameter 1 -   (log scale) 1.88 (0.07) 4.80 (0.11) U(-10, 5) 

Fishery Selectivity Parameter 2 -   0.65 (0.07) 4.50 (0.54) U(-5, 10) 

MWT Survey Selectivity p1 - MWT  (log scale) 0.56 (0.38) 2.25 (0.23) U(-1.5, 5) 

MWT Survey Selectivity p2 - MWT  0.11 (0.09) 0.50 (0.13) U(-5, 10) 

Gillnet Selectivity p1 - GN  (log scale) 0.42 (0.75) 2.96 (0.54) U(-1.5, 5) 

Gillnet Selectivity p2 - GN  0.21 (0.15) 0.99 (0.46) U(-5, 10) 

L-infinity - L  (log scale) NA 6.06 (0.01) U(5.9, 6.5) 

Brody Growth Coefficient - K  (log scale) NA -1.28 (0.05) U(-5, 1) 

Growth Variance Intercept - a  (log scale) NA 4.83 (1.10) U(-5, 10) 

Growth Variance Slope - b (log scale) NA 0.99 (0.63) U(-1, 5) 

Aging Error Intercept - c  0 NA U(0, 10) 

Aging Error Slope - d  1.001 (0.01) NA U(0.5, 1.5) 

Aging Error CV Intercept - e  0.018 (0.01) NA U(0, 0.5) 

Aging Error CV Slope - f  0 NA U(0, 10) 

Hydroacoustic Calibration Coefficient -   (log scale) 0 0 NA 

 924 

925 
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Table 3. Negative log-likelihood (NLL) and standard deviation of normalized residuals (SDNR) 926 
values for common data sources.  927 
 928 

 Male 

Yield 

Female 

Yield 

Hydroacoustic 

Data 

SCAA – NLL -32.98 -33.00 0.32 

SCSA – NLL  -35.17 -35.23 2.03 

SCAA – SDNR 0.09 0.12 1.26 

SCSA – SDNR 0.05 0.04 1.51 

 929 
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 931 

Figure 1. OMNRF Quota Management Areas (QMAs) pre-2016. We are characterizing Thunder 932 

Bay stock area as QMAs 1-4 which are shown zoomed in at the top left.  933 

 934 

 935 

 936 

 937 

 938 
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940 
Figure 2. Spawning biomass in millions of kg of mature females (>250 mm), exploitation rate 941 

(harvest/biomass of fish > 250 mm), and abundance in millions of fish for the SCAA and the 942 

SCSA. First column represents the original assessment models where M  is estimated in the 943 

SCAA (however not in the SCSA). The second column represents assessment results where M  944 

is fixed (assumed known) in both the SCAA and the SCSA. SCSA results are identical in each 945 

column. Shaded regions denote 95% HPD intervals and dashed lines or points are medians of the 946 

posterior distribution. Hollow squares denote SCAA output while filled squares denote SCSA 947 

output. Light shading denotes the HPD for the SCAA, darker shading denotes the HPD for the 948 

SCSA, and the darkest shading is where the two intervals overlap.  949 

 950 

 951 
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952 
Figure 3. Recruitment for the SCAA and SCSA. Both represent the number of fish entering the 953 
model in a given year, but for the SCAA it is the number of age 2 fish entering the population and 954 

in the SCSA it is the number of fish greater than 170 mm that are entering the population. Points 955 
denote medians of the posterior distribution and error bars are the 95% HPD intervals.  956 
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958 

 959 

Figure 4. Upper left: Fit to growth increment data. Black line depicts the median of the posterior 960 

distribution of the expected growth increment ( ( )lE  ) and arrows represent middle 95% quantiles 961 

of gamma distributions derived using point estimates of parameters a , b , and ( )lE   that define 962 

the variance about an expected growth increment. Upper right: Residuals, medians of the posterior 963 
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distribution, from fit to growth increment data. Lower panel: Growth transition matrix at the 964 

posterior medians for growth parameters. Note that the area of the circles represent the probability 965 

of growing into a length bin given a starting length bin. Length bins are represented on axes as 966 

midpoints. Plus group is length bin 410-420 mm. 967 

 968 

 969 

Figure 5. Retrospective analyses for spawning biomass and exploitation rate. Shown are times 970 

series estimates of spawning biomass and exploitation rate when five terminal years of data are 971 

sequentially dropped from each assessment. Each column depicts a different assessment model. 972 

The first column depicts retrospective results from the SCAA, the second depicts the SCAA with 973 

fixed, assumed known natural mortality values, and the third depicts the SCSA. Spawning biomass 974 

is reported as millions of kg of mature females and exploitation rate as yield/biomass of fish > 250 975 

mm.  Shown on each panel is the corresponding value of Mohn’s rho (  ) and the precision 976 

indicator ( ). 977 
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980 

 981 

Figure 6. Fit to hydroacoustic estimates of spawning abundance. No data from 1999-2004 and in 982 

2006. Spawning fish is reported as millions of fish. For the upper row, points denote medians of 983 

the posterior distribution and error bars are 95% HPD intervals. For the bottom plot, points denote 984 

medians of the posterior distribution and error bars are sampling intervals (95%) for the data 985 

calculated at the posterior median of the standard deviation   for hydroacoustic data. Filled 986 

diamonds represent the hydroacoustic survey estimates of spawning abundance, used as observed 987 

data in the models. Hollow squares and triangles represent the SCAA and SCSA fit to the 988 

hydroacoustic survey data set, respectively. Note SCAA and SCSA points are offset to increase 989 

visibility.  990 
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